Sorry, your browser cannot access this site
This page requires browser support (enable) JavaScript
Learn more >

MengFanjun的博客

最近一直在学习pytorch,这次自己跟着教程搭了一个神经网络,用的最经典的CIFAR10,先看一下原理 在这里插入图片描述 输入3通道32*32,最后经过3个卷积,3个最大池化,还有1个flatten,和两个线性化,得到十个输出

程序如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear


class NetWork(nn.Module):
def __init__(self):
super(NetWork, self).__init__()
self.conv1=Conv2d(3,32,5,padding=2)
self.maxpool1=MaxPool2d(2)
self.conv2=Conv2d(32,32,5,padding=2)
self.maxpool2=MaxPool2d(2)
self.conv3=Conv2d(32,64,5,padding=2)
self.maxpool3=MaxPool2d(2)
self.flatten=Flatten()
self.linear1=Linear(1024,64)#1024=64*4*4
self.linear2=Linear(64,10)


def forward(self,x):
x=self.conv1(x)
x=self.maxpool1(x)
x=self.conv2(x)
x=self.maxpool2(x)
x=self.conv3(x)
x=self.maxpool3(x)
x=self.flatten(x)
x=self.linear1(x)
x=self.linear2(x)
return x


network=NetWork()
print(network)

这里我们还可以用tensorboard看一看,记得import

1
2
3
4
5
6
7
input=torch.ones((64,3,32,32))
output=network(input)


writer=SummaryWriter("logs_seq")
writer.add_graph(network,input)
writer.close()

在tensorboard中是这样的 在这里插入图片描述 打开NetWork 在这里插入图片描述 可以放大查看 在这里插入图片描述

神经网络都是有误差的,所以我们采用梯度下降来减少误差 代码如下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import torchvision.datasets
from torch import nn
from torch.nn import Sequential,Conv2d,MaxPool2d,Flatten,Linear
from torch.utils.data import DataLoader
import torch

dataset=torchvision.datasets.CIFAR10("./dataset2",train=False,transform=torchvision.transforms.ToTensor(),
download=True)


dataloader=DataLoader(dataset,batch_size=1)

class NetWork(nn.Module):
def __init__(self):
super(NetWork, self).__init__()
self.conv1=Conv2d(3,32,5,padding=2)
self.maxpool1=MaxPool2d(2)
self.conv2=Conv2d(32,32,5,padding=2)
self.maxpool2=MaxPool2d(2)
self.conv3=Conv2d(32,64,5,padding=2)
self.maxpool3=MaxPool2d(2)
self.flatten=Flatten()
self.linear1=Linear(1024,64)#1024=64*4*4
self.linear2=Linear(64,10)


self.model1=Sequential(
Conv2d(3,32,5,padding=2),
MaxPool2d(2),
Conv2d(32,32,5,padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)

def forward(self,x):
# x=self.conv1(x)
# x=self.maxpool1(x)
# x=self.conv2(x)
# x=self.maxpool2(x)
# x=self.conv3(x)
# x=self.maxpool3(x)
# x=self.flatten(x)
# x=self.linear1(x)
# x=self.linear2(x)
x=self.model1(x)
return x


loss=nn.CrossEntropyLoss()
network=NetWork()
optim=torch.optim.SGD(network.parameters(),lr=0.01)##利用梯度下降作为优化器
for epoch in range(20):##循环20次
running_loss=0.0
for data in dataloader:
imgs, targets=data
outputs=network(imgs)
result_loss=loss(outputs, targets)
optim.zero_grad()##把每一次的下降值归零
result_loss.backward()
optim.step()
running_loss=running_loss+result_loss
print(running_loss)

我电脑的GPU是RTX2060属于比较老的了,跑了三遍大概花了1分钟,实在太慢我就结束运行了 输出结果:

1
2
3
tensor(18733.7539, grad_fn=<AddBackward0>)
tensor(16142.7451, grad_fn=<AddBackward0>)
tensor(15420.9199, grad_fn=<AddBackward0>)

可以看出误差是在越来越小的,但是在应用中跑20层实在太少了,等我新电脑到了我跑100层

评论